- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- + 直线与抛物线的位置关系
- 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
上一点
到其焦点
的距离为4,椭圆
的离心率
,且过抛物线的焦点
.
(1)求抛物线
和椭圆
的标准方程;
(2)过点
的直线
交抛物线
于
两不同点,交
轴于点
,已知
,
,求证:
为定值.







(1)求抛物线


(2)过点









已知
为坐标原点,抛物线
,点
,设直线
与
交于不同的两点
、
.
(1)若直线
轴,求直线
的斜率的取值范围;
(2)若直线
不垂直于
轴,且
,证明:直线
过定点.







(1)若直线


(2)若直线




设抛物线
的焦点为
,点
在
上且
,设准线与
轴交于
点,过
作准线的垂线(垂足为
),若以
为直径的圆过线段
的中点
,则
的方程为( )













A.![]() ![]() | B.![]() ![]() |
C.![]() | D.![]() |
在直角坐标系
中,曲线
上的点均在曲线
外,且对
上任意一点
,
到直线
的距离等于该点与曲线
上点的距离的最小值.
(1)求动点
的轨迹
的方程;
(2)若点
是曲线
的焦点,过
的两条直线
关于
轴对称,且分别交曲线
于
,若四边形
的面积等于
,求直线
的方程.








(1)求动点


(2)若点










已知抛物线
:
的焦点为
,抛物线
与直线
交于两点
(
为坐标原点),且
.
(1)求抛物线
的方程.
(2)不过原点的直线
与
垂直,且与抛物线交于不同的两点
、
,若坐标原点
在以线段
为直径的圆上,求
的面积.








(1)求抛物线

(2)不过原点的直线







已知直线
交抛物线
于两点,过点
分别作抛物线
的切线,若两条切线互相垂直且交于点
.
(1)证明:直线
恒过定点;
(2)若直线
的斜率为1,求点
的坐标.





(1)证明:直线

(2)若直线

