- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- + 直线与抛物线的位置关系
- 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线C:y2=2px(p>0)的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点,直线l与抛物线C相交于A,B两点.
(1)求抛物线C的方程;
(2)设
·
=
,求直线l的方程.
(1)求抛物线C的方程;
(2)设



在平面直角坐标系
中,点
,动点
在
轴上投影为点
,且
.
(1)求动点
的轨迹方程;
(2)过点
的直线与点
的轨迹相交于
两点,若
,求直线的方程(结果用斜截式表示).






(1)求动点

(2)过点




设A,B为曲线C:y=
上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,求M点的坐标及切线方程.

(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,求M点的坐标及切线方程.
已知点
为抛物线
:
的焦点,抛物线
上的点
满足
(
为坐标原点),且
.
(1)求抛物线
的方程;
(2)若直线
:
与抛物线
交于不同的两点
,是否存在实数
及定点
,对任意实数
,都有
?若存在,求出
的值及点
的坐标;若不存在,请说明理由.








(1)求抛物线

(2)若直线










抛物线的图象关于
轴对称,顶点在坐标原点,点
在抛物线上.
(1)求抛物线的标准方程;
(2)设直线
的方程为
,若直线
与抛物线交于
两点,且以
为直径的圆过点
,求
的值.


(1)求抛物线的标准方程;
(2)设直线






