- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- + 直线与抛物线的位置关系
- 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过抛物线
:
的焦点
的直线
(倾斜角为锐角)交抛物线于
,
两点,若
为线段
的中点,连接
并延长交抛物线
于点
,已知
,则直线
的斜率是( )













A.![]() | B.![]() | C.![]() | D.![]() |
过抛物线y=
焦点F的直线交抛物线于A,B两点,点C在直线y=-1上,若△ABC为正三角形,则其边长为

A.11 | B.13 | C.14 | D.12 |
已知抛物线y2=2px(p>0)上点M(3,m)到焦点F的距离为4.
(Ⅰ)求抛物线方程;
(Ⅱ)点P为准线上任意一点,AB为抛物线上过焦点的任意一条弦,设直线PA,PB,PF的斜率为k1,k2,k3,问是否存在实数λ,使得k1+k2=λk3恒成立.若存在,请求出λ的值;若不存在,请说明理由.
(Ⅰ)求抛物线方程;
(Ⅱ)点P为准线上任意一点,AB为抛物线上过焦点的任意一条弦,设直线PA,PB,PF的斜率为k1,k2,k3,问是否存在实数λ,使得k1+k2=λk3恒成立.若存在,请求出λ的值;若不存在,请说明理由.
已知
,
为抛物线
上两点,点
,
的横坐标分别为
,
,过
,
分别作抛物线的切线,两切线交于点
,则点
的横坐标为________________.











如图,由抛物线y2=8x 与圆E:(x-2)2+y2=9 的实线部分构成图形Ω,过点P(2,0)的直线始终与图形Ω 中的抛物线部分及圆部分有交点,则|AB|的取值范围为


A.![]() | B.![]() | C.![]() | D.![]() |
已知抛物线C:y2=4x和直线l:x=-1.
(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;
(2)过直线l上任一点P作抛物线的两条切线,切点记为A,B,求证:直线AB过定点.
(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;
(2)过直线l上任一点P作抛物线的两条切线,切点记为A,B,求证:直线AB过定点.