- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- + 直线与抛物线的位置关系
- 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过点
任作一直线交抛物线
于
两点,过
两点分别作抛物线的切线
.
(Ⅰ)记
的交点
的轨迹为
,求
的方程;
(Ⅱ)设
与直线
交于点
(异于点
),且
,
.问
是否为定值?若为定值,请求出定值.若不为定值,请说明理由.





(Ⅰ)记




(Ⅱ)设







在平面直角坐标系
中,抛物线
:
,直线
与
交于
,
两点,
.
(1)求
的方程;
(2)斜率为
(
)的直线
过线段
的中点,与
交于
两点,直线
分别交直线
于
两点,求
的最大值.








(1)求

(2)斜率为










已知抛物线
(
)的焦点为
,以抛物线上一动点
为圆心的圆经过点
(Ⅰ)求
的值;
(Ⅱ)当点
的横坐标为1且位于第一象限时,过
作抛物线的两条弦
,且满足
.若直线AB恰好与圆
相切,求直线AB的方程.




A.若圆![]() ![]() |

(Ⅱ)当点





点
在直线
上,若存在过
的直线交抛物线
于
两点,且
,则称点
为“
点”.下列结论中正确的是( )








A.直线![]() ![]() |
B.直线![]() ![]() |
C.直线![]() ![]() |
D.直线![]() ![]() |
已知点
是抛物线
:
(
)上一点,
为坐标原点,若
是以点
为圆心,
的长为半径的圆与抛物线
的两个公共点,且
为等边三角形,则
的值是_______ .











在平面直角坐标系中,已知点
,直线
,动直线
垂直
于点
,线段
的垂直平分线交
于点
,设点
的轨迹为
.
(Ⅰ)求曲线
的方程;
(Ⅱ)以曲线
上的点
为切点做曲线
的切线
,设
分别与
、
轴交于
两点,且
恰与以定点
为圆心的圆相切.当圆
的面积最小时,求
与
面积的比.










(Ⅰ)求曲线

(Ⅱ)以曲线












