- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- + 直线与抛物线的位置关系
- 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
和直线
没有公共点(其中
、
为常数),动点
是直线
上的任意一点,过
点引抛物线
的两条切线,切点分别为
、
,且直线
恒过点
.
(1)求抛物线
的方程;
(2)已知
点为原点,连结
交抛物线
于
、
两点,证明:
.













(1)求抛物线

(2)已知






若直线l:x+my+c=0与抛物线y2=2x交于A、B两点,O点是坐标原点.
(1)当m=﹣1,c=﹣2时,求证:OA⊥OB;
(2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标.
(3)当OA⊥OB时,试问△OAB的外接圆与抛物线的准线位置关系如何?证明你的结论.
(1)当m=﹣1,c=﹣2时,求证:OA⊥OB;
(2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标.
(3)当OA⊥OB时,试问△OAB的外接圆与抛物线的准线位置关系如何?证明你的结论.
如图,抛物线
的焦点,点为
是抛物线
上一点,且
,
的方程为
,过点
作直线
,与抛物线
和
依次交于
.(如图所示)

(1)求抛物线
的方程;
(2)求
的最小值.












(1)求抛物线

(2)求

(题文)如图,抛物线
的焦点为
,取垂直于
轴的直线与抛物线交于不同的两点
,过
作圆心为
的圆,使抛物线上其余点均在圆外,且
.

(1)求抛物线
和圆
的方程;
(2)过点
作直线
,与抛物线
和圆
依次交于
,求
的最小值.








(1)求抛物线


(2)过点






在平面直角坐标系
中,动点
到点
的距离比它到
轴的距离多1.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)过点
任作直线
,交曲线
于
两点,交直线
于点
,
是
的中点,求证:
.




(Ⅰ)求点


(Ⅱ)过点








