- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- + 直线与抛物线的位置关系
- 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设抛物线
的焦点为F,直线
与抛物线W相交于A,B两点,点Q为线段AB的中点.
(1)求m的取值范围;
(2)求证:点Q的纵坐标为定值;
(3)若
,求直线l的方程.


(1)求m的取值范围;
(2)求证:点Q的纵坐标为定值;
(3)若

已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为
,直线l过点(1,2),且与抛物线交于A,B两点,过A,B两点分别作抛物线的切线,设其交点为M.
(1)求抛物线的方程;
(2)求证:点M在定直线上,并求出直线的方程;
(3)求抛物线上的点到(2)中的定直线的最小距离.

(1)求抛物线的方程;
(2)求证:点M在定直线上,并求出直线的方程;
(3)求抛物线上的点到(2)中的定直线的最小距离.
如图,已知抛物线
:
和⊙
,过抛线
上一点
作两条直线与⊙
相切于A、B两点,分别交抛物线于E、F两点,圆心点
到抛物线准线的距离为
.

(Ⅰ)求抛物线
的方程;
(Ⅱ)当
的角平分线垂直x轴时,求直线EF的斜率;
(Ⅲ)若直线AB在
轴上的截距为
,求
的最小值.










(Ⅰ)求抛物线

(Ⅱ)当

(Ⅲ)若直线AB在



已知抛物线
的焦点为
,且过点
与
轴垂直的直线截抛物线
所得弦长为4.
(Ⅰ)求
(Ⅱ)当动直线
与抛物线
相切与点
,且与直线
相交于点
,求证:
为直角三角形.





(Ⅰ)求

(Ⅱ)当动直线





