- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- + 椭圆中的定点、定值
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆
,点
,以线段
为直径的圆内切于圆
,记点
的轨迹为
.
(1)求曲线
的方程;
(2)若
为曲线
上的两点,记
,
,且
,试问
的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.






(1)求曲线

(2)若






已知圆
的一条直径是椭圆
的长轴,过椭圆
上一点
的动直线
与圆
相交于点
,弦
的最小值为
.
(1)求圆
及椭圆
的方程;
(2) 已知点
是椭圆
上的任意一点,点
是
轴上的一定点,直线
的方程为
,若点
到定直线
的距离与到定点
的距离之比为
,求定点
的坐标.









(1)求圆


(2) 已知点











在平面直角坐标系
中,已知
,
,且
,记动点
的轨迹为
.
(Ⅰ)求曲线
方程;
(Ⅱ)过点
的动直线
与曲线
相交
两点,试问在
轴上是否存在与点
不同的定点
,使得
?若存在,求出点
的坐标;若不存在,请说明理由.






(Ⅰ)求曲线

(Ⅱ)过点









已知椭圆
的方程为
,椭圆
的短轴为
的长轴且离心率为
.

(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,
分别为直线
与椭圆
的交点,
为椭圆
与
轴的交点,
面积为
面积的2倍,若直线
的方程为
,求
的值.






(Ⅰ)求椭圆

(Ⅱ)如图,











已知椭圆
:
的焦距为4,且点
在椭圆
上,直线
经过椭圆
的左焦点
,与椭圆
交于
两点,且其斜率为
,
为坐标原点,
为椭圆
的右焦点.
(1)求椭圆
的方程;
(2)设
,延长
分别与椭圆
交于
两点,直线
的斜率为
,求证:
为定值.













(1)求椭圆

(2)设







如图,在平面直角坐标系
中,已知椭圆
的离心率为
,左焦点
,直线
与椭圆交于
两点,
为椭圆上异于
的点.

(1)求椭圆
的方程;
(2)若
,以
为直径的圆
过
点,求圆
的标准方程;
(3)设直线
与
轴分别交于
,证明:
为定值.









(1)求椭圆

(2)若





(3)设直线



