刷题首页
题库
高中数学
题干
已知椭圆
的方程为
,椭圆
的短轴为
的长轴且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,
分别为直线
与椭圆
的交点,
为椭圆
与
轴的交点,
面积为
面积的2倍,若直线
的方程为
,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2018-03-04 05:14:38
答案(点此获取答案解析)
同类题1
已知椭圆
经过点
,其左焦点为
.过
点的直线
交椭圆于
、
两点,交
轴的正半轴于点
.
(1)求椭圆
的方程;
(2)过点
且与
垂直的直线交椭圆于
、
两点,若四边形
的面积为
,求直线
的方程;
(3)设
,
,求证:
为定值.
同类题2
椭圆
:
的左,右焦应分别是
,
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为1.
(1)求椭圆
的方程;
(2)已知直线
:
与椭圆
切于点
,直线
平行于
,与椭圆
交于不同的两点
、
,且与直线
交于点
.证明:存在常数
,使得
,并求
的值;
(3)点
是椭圆
上除长轴端点外的任一点,连接
,
,设
后的角平分线
交
的长轴于点
,求
的取值范围.
同类题3
已知椭圆
E
的方程为
1(
a
>
b
>0)双曲线
1的两条渐近线为
l
1
和
l
2
,过椭圆
E
的右焦点
F
作直线
l
,使得
l
⊥
l
2
于点
C
,又
l
与
l
1
交于点
P
,
l
与椭圆
E
的两个交点从上到下依次为
A
,
B
(如图).
(1)当直线
l
1
的倾斜角为30°,双曲线的焦距为8时,求椭圆的方程;
(2)设
,证明:λ
1
+λ
2
为常数.
同类题4
已知
,
,
,
,
,
,记动点
的轨迹为
.
(1)求曲线
的轨迹方程.
(2)若斜率为
的直线
与曲线
交于不同的两点
、
,
与
轴相交于
点,则
是否为定值?若为定值,则求出该定值;若不为定值,请说明理由.
同类题5
已知椭圆
的离心率
e
满足
,右顶点为
A
,上顶点为
B
,点
C
(0,-2),过点
C
作一条与
y
轴不重合的直线
l
,直线
l
交椭圆
E
于
P
,
Q
两点,直线
BP
,
BQ
分别交
x
轴于点
M
,
N
;当直线
l
经过点
A
时,
l
的斜率为
.
(1)求椭圆
E
的方程;
(2)证明:
为定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题