- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- + 椭圆中的定点、定值
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率为
,半焦距为
,且
,经过椭圆的左焦点
,斜率为
的直线与椭圆交于
,
两点,
为坐标原点.
(I)求椭圆
的标准方程.
(II)设
,延长
,
分别与椭圆交于
,
两点,直线
的斜率为
,求证:
为定值.









(I)求椭圆

(II)设








椭圆C:
的长轴是短轴的两倍,点
在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为
、
、
,且
、
、
恰好构成等比数列,记△
的面积为S.
(1)求椭圆C的方程.
(2)试判断
是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求S的范围.









(1)求椭圆C的方程.
(2)试判断

(3)求S的范围.
已知椭圆
的左焦点F为圆
的圆心,且椭圆上的点到点F的距离最小值为
.
(I)求椭圆方程;
(II)已知经过点F的动直线
与椭圆交于不同的两点A、B,点M(
),证明:
为定值.



(I)求椭圆方程;
(II)已知经过点F的动直线



已知椭圆
的离心率为
,其左、右焦点分别为
、
,
为椭圆
上的动点,且
的最大值为16.







(Ⅰ)求椭圆的方程;
(II)设、
分别为椭圆的右顶点和上顶点,当
在第一象限时,直线
与
轴交于点
,直线
与
轴交于点
,问
与
面积之差是否为定值?说明理由.
已知椭圆C:
,F1、F2分别为其左、右焦点,A1,A2分别为其长轴的左右端点,动点M满足MA2⊥A1A2,A1M交椭圆于点P,则
的值为( )



A.8 | B.16 | C.20 | D.24 |
已知椭圆C:
(
>b>0)的左、右顶点分别为A1、A2,上、下顶点分别为B2、B1,O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若M、N是椭圆C上的两个不同的动点,直线OM、ON的斜率之积等于
,试探求△OMN的面积是否为定值,并说明理由.



(Ⅰ)求椭圆C的方程;
(Ⅱ)若M、N是椭圆C上的两个不同的动点,直线OM、ON的斜率之积等于

已知定直线
,定点
,以坐标轴为对称轴的椭圆
过点
且与
相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)椭圆的弦
的中点分别为
,若
平行于
,则
斜率之和是否为定值?若是定值,请求出该定值;若不是定值请说明理由.





(Ⅰ)求椭圆的标准方程;
(Ⅱ)椭圆的弦




