刷题首页
题库
高中数学
题干
已知椭圆
:
的焦距为4,且点
在椭圆
上,直线
经过椭圆
的左焦点
,与椭圆
交于
两点,且其斜率为
,
为坐标原点,
为椭圆
的右焦点.
(1)求椭圆
的方程;
(2)设
,延长
分别与椭圆
交于
两点,直线
的斜率为
,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-03-03 04:12:30
答案(点此获取答案解析)
同类题1
如图“月亮图”是由曲线
与
构成,曲线
是以原点
为中点,
为焦点的椭圆的一部分,曲线
是以
为顶点,
为焦点的抛物线的一部分,
是两条曲线的一个交点.
(Ⅰ)求曲线
和
的方程;
(Ⅱ)过
作一条与
轴不垂直的直线,分别与曲线
依次交于
四点,若
为
的中点,
为
的中点,问:
是否为定值?若是求出该定值;若不是说明理由.
同类题2
已知
、
为椭圆
(
)和双曲线
的公共顶点,
、
分为双曲线和椭圆上不同于
、
的动点,且满足
,设直线
、
、
、
的斜率分别为
、
、
、
.
(1)求证:点
、
、
三点共线;
(2)求
的值;
(3)若
、
分别为椭圆和双曲线的右焦点,且
,求
的值.
同类题3
在平面直角坐标系
内,动点
到定点
的距离与
到定直线
的距离之比为
(1)求动点
的轨迹
的方程;
(2)若轨迹
上的动点
到定点
的距离的最小值为1,求
的值;
(3)设点
、
是轨迹
上两个动点,直线
、
与轨迹
的另一交点分别为
、
,且直线
、
的斜率之积等于
,问四边形
的面积
是否为定值?请说明理由
同类题4
已知椭圆
C
:
的右焦点为
,离心率为
,直线
与椭圆
C
交于不同两点
,直线
分别交
轴于
两点.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)求证:
.
同类题5
已知椭圆
的中心在坐标原点,离心率等于
,该椭圆的一个长轴端点恰好是抛物线
的焦点.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
的两个交点记为
、
,其中点
在第一象限,点
、
是椭圆上位于直线
两侧的动点.当
、
运动时,满足
,试问直线
的斜率是否为定值?若是,求出该定值;若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题