刷题首页
题库
高中数学
题干
已知
是椭圆
上异于点
,
的一点,
的离心率为
,则直线
与
的斜率之积为__________.
上一题
下一题
0.99难度 填空题 更新时间:2018-03-03 03:52:23
答案(点此获取答案解析)
同类题1
在平面直角坐标系中,焦点在
轴上的椭圆
经过点
,其中
为椭圆
的离心率.过点
作斜率为
的直线
交椭圆
于
两点(
在
轴下方).
(1)求椭圆
的方程;
(2)过原点
且平行于
的直线交椭圆
于点
,
,求
的值;
(3)记直线
与
轴的交点为
.若
,求直线
的斜率
.
同类题2
已知椭圆
,过点
的直线
交椭圆
于
,
两点,
为坐标原点.
(1)若直线
过椭圆
的上顶点,求
的面积;
(2)若
,
分别为椭圆
的左、右顶点,直线
,
的斜率分别为
,
,求证
为定值.
同类题3
椭圆
,过点
离心率为
左右焦点分别为
(1)求椭圆C的方程
(2)过
作不垂直
轴的直线交椭圆于A,B两点弦AB的垂直平分线交
轴于
点,求证:
为定值,并求出这个定值
同类题4
已知椭圆
的离心率为
,且过点
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)四边形
的顶点在椭圆上,且对角线
、
过原点
,若
,
(1)求
的最值;
(2)求证;四边形
的面积为定值.
同类题5
已知椭圆
,
为椭圆
的右焦点,
为椭圆上一点,
的离心率
(1)求椭圆
的标准方程;
(2)斜率为
的直线
过点
交椭圆
于
两点,线段
的中垂线交
轴于点
,试探究
是否为定值,如果是,请求出该定值;如果不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题