- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- + 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆E的中心在坐标原点O,两个焦点分别为A(﹣1,0),B(1,0),一个顶点为H(2,0).
(1)求椭圆E的标准方程;
(2)对于x轴上的点P(t,0),椭圆E上存在点M,使得MP⊥MH,求实数t的取值范围.
(1)求椭圆E的标准方程;
(2)对于x轴上的点P(t,0),椭圆E上存在点M,使得MP⊥MH,求实数t的取值范围.
已知椭圆与双曲线
有相同的焦点坐标,且点
在椭圆上.
(1)求椭圆的标准方程;
(2)设A、B分别是椭圆的左、右顶点,动点M满足
,垂足为B,连接AM交椭圆于点P(异于A),则是否存在定点T,使得以线段MP为直径的圆恒过直线BP与MT的交点Q,若存在,求出点T的坐标;若不存在,请说明理由.


(1)求椭圆的标准方程;
(2)设A、B分别是椭圆的左、右顶点,动点M满足

在平面直角坐标系
中,设椭圆
.
(1)过椭圆
的左焦点,作垂直于
轴的直线交椭圆
于
、
两点,若
,求实数
的值;
(2)已知点
,
、
是椭圆
上的动点,
,求
的取值范围;
(3)若直线
与椭圆
交于
、
两点,求证:对任意大于3的实数
,以线段
为直径的圆恒过定点,并求该定点的坐标.


(1)过椭圆







(2)已知点






(3)若直线






已知点
,动点P到直线
的距离与动点P到点F的距离之比为
.
(1)求动点P的轨迹C的方程;
(2)过点F作任一直线交曲线C于A,B两点,过点F作AB的垂线交直线
于点N;求证:ON平分线段AB.



(1)求动点P的轨迹C的方程;
(2)过点F作任一直线交曲线C于A,B两点,过点F作AB的垂线交直线

已知椭圆C:
(a>b>0)过点(1,
),过椭圆C的一个焦点作与长轴垂直的直线,被椭圆C截得的弦长为1
(1)求椭圆C的标准方程
(2)已知点P为椭圆C上不同于顶点的一点,A,B为椭圆C的左,右顶点,直线AP,BP分别与直线x=﹣6交于M,N两点设线段MN中点为Q,求
的取最小值时点Q的坐标.


(1)求椭圆C的标准方程
(2)已知点P为椭圆C上不同于顶点的一点,A,B为椭圆C的左,右顶点,直线AP,BP分别与直线x=﹣6交于M,N两点设线段MN中点为Q,求

在平面直角坐标系xOy内,点(
)在椭圆E:
(a>0,b>0),椭圆E的离心率为
,直线l过左焦点F且与椭圆E交于A、B两点

(1)求椭圆E的标准方程;
(2)若动直线l与x轴不重合,在x轴上是否存在定点P,使得PF始终平分∠APB?若存在,请求出点P的坐标:若不存在,请说明理由.




(1)求椭圆E的标准方程;
(2)若动直线l与x轴不重合,在x轴上是否存在定点P,使得PF始终平分∠APB?若存在,请求出点P的坐标:若不存在,请说明理由.
已知
为坐标原点,椭圆
的下焦点为
,过点
且斜率为
的直线与椭圆相交于
,
两点.
(1)以
为直径的圆与
相切,求该圆的半径;
(2)在
轴上是否存在定点
,使得
为定值,若存在,求出点
的坐标;若不存在,请说明理由.







(1)以


(2)在




已知椭圆
:
,离心率
,
是椭圆的左顶点,
是椭圆的左焦点,
,直线
:
.
(1)求椭圆
方程;
(2)直线
过点
与椭圆
交于
、
两点,直线
、
分别与直线
交于
、
两点,试问:以
为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.








(1)求椭圆

(2)直线











已知椭圆
的右顶点为
,上顶点为
,右焦点为
.连接
并延长与椭圆
相交于点
,且
(1)求椭圆
的方程;
(2)设经过点
的直线
与椭圆
相交于不同的两点
,直线
分别与直线
相交于点
,点
.若
的面积是
的面积的2倍,求直线
的方程.








(1)求椭圆

(2)设经过点











已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为
,点
在椭圆C上,直线
与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N
Ⅰ
求椭圆C的方程;
Ⅱ
在x轴上是否存在点P,使得无论非零实数k怎样变化,总有
为直角?若存在,求出点P的坐标,若不存在,请说明理由.







