已知椭圆E的中心在坐标原点O,两个焦点分别为A(﹣1,0),B(1,0),一个顶点为H(2,0).
(1)求椭圆E的标准方程;
(2)对于x轴上的点P(t,0),椭圆E上存在点M,使得MP⊥MH,求实数t的取值范围.
当前题号:1 | 题型:解答题 | 难度:0.99
已知椭圆与双曲线有相同的焦点坐标,且点在椭圆上.
(1)求椭圆的标准方程;
(2)设AB分别是椭圆的左、右顶点,动点M满足,垂足为B,连接AM交椭圆于点P(异于A),则是否存在定点T,使得以线段MP为直径的圆恒过直线BPMT的交点Q,若存在,求出点T的坐标;若不存在,请说明理由.
当前题号:2 | 题型:解答题 | 难度:0.99
在平面直角坐标系中,设椭圆.
(1)过椭圆的左焦点,作垂直于轴的直线交椭圆两点,若,求实数的值;
(2)已知点是椭圆上的动点,,求的取值范围;
(3)若直线与椭圆交于两点,求证:对任意大于3的实数,以线段为直径的圆恒过定点,并求该定点的坐标.
当前题号:3 | 题型:解答题 | 难度:0.99
已知点,动点P到直线的距离与动点P到点F的距离之比为.
(1)求动点P的轨迹C的方程;
(2)过点F作任一直线交曲线CA,B两点,过点FAB的垂线交直线于点N;求证:ON平分线段AB.
当前题号:4 | 题型:解答题 | 难度:0.99
已知椭圆Cab>0)过点(1,),过椭圆C的一个焦点作与长轴垂直的直线,被椭圆C截得的弦长为1
(1)求椭圆C的标准方程
(2)已知点P为椭圆C上不同于顶点的一点,AB为椭圆C的左,右顶点,直线APBP分别与直线x=﹣6交于MN两点设线段MN中点为Q,求的取最小值时点Q的坐标.
当前题号:5 | 题型:解答题 | 难度:0.99
在平面直角坐标系xOy内,点()在椭圆Ea>0,b>0),椭圆E的离心率为,直线l过左焦点F且与椭圆E交于AB两点

(1)求椭圆E的标准方程;
(2)若动直线lx轴不重合,在x轴上是否存在定点P,使得PF始终平分∠APB?若存在,请求出点P的坐标:若不存在,请说明理由.
当前题号:6 | 题型:解答题 | 难度:0.99
已知为坐标原点,椭圆的下焦点为,过点且斜率为的直线与椭圆相交于两点.
(1)以为直径的圆与相切,求该圆的半径;
(2)在轴上是否存在定点,使得为定值,若存在,求出点的坐标;若不存在,请说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
已知椭圆,离心率是椭圆的左顶点,是椭圆的左焦点,,直线.
(1)求椭圆方程;
(2)直线过点与椭圆交于两点,直线分别与直线交于两点,试问:以为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
已知椭圆的右顶点为,上顶点为,右焦点为.连接并延长与椭圆相交于点,且
(1)求椭圆的方程;
(2)设经过点的直线与椭圆相交于不同的两点,直线分别与直线相交于点,点.若的面积是的面积的2倍,求直线的方程.
当前题号:9 | 题型:解答题 | 难度:0.99
已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为,点在椭圆C上,直线与椭圆C交于EF两点,直线AEAF分别与y轴交于点MN
求椭圆C的方程;
x轴上是否存在点P,使得无论非零实数k怎样变化,总有为直角?若存在,求出点P的坐标,若不存在,请说明理由.
当前题号:10 | 题型:解答题 | 难度:0.99