- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的上顶点为
,以
为圆心椭圆的长半轴为半径的圆与
轴的交点分别为
,
.
(1)求椭圆
的标准方程;
(2)设不经过点
的直线
与椭圆
交于
,
两点,且
,试探究直线
是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.







(1)求椭圆

(2)设不经过点







已知椭圆
的左、右焦点分别为
,
,点
是椭圆
的右端点,且
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,点
关于
轴的对称点为
(
与
不重合),则直线
与
轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.






(1)求椭圆

(2)设直线











已知椭圆
过点
,且离心率为
.直线
与
轴正半轴和
轴分别交于点
、
,与椭圆分别交于点
、
,各点均不重合且满足
,
.
(1)求椭圆的标准方程;
(2)若
,试证明:直线
过定点并求此定点.












(1)求椭圆的标准方程;
(2)若


已知动点
到定点
的距离比
到定直线
的距离小
.
(1)求点
的轨迹
的方程;
(2)过点
任意作互相垂直的两条直线
,
,分别交曲线
于点
,
和
,
.设线段
,
的中点分别为
,
,求证:直线
恒过一个定点;
(3)在(2)的条件下,求
面积的最小值.





(1)求点


(2)过点













(3)在(2)的条件下,求

已知椭圆
上任一点
到
,
的距离之和为4.
(1)求椭圆
的标准方程;
(2)已知点
,设直线
不经过
点,
与
交于
,
两点,若直线
的斜率与直线
的斜率之和为
,判断直线
是否过定点?若是,求出该定点的坐标;若不是,请说明理由.




(1)求椭圆

(2)已知点











已知椭圆
的离心率为
,其右焦点
到直线
的距离为
.
(1)求椭圆
的方程;
(2)若过
作两条互相垂直的直线
,
是
与椭圆
的两个交点,
是
与椭圆
的两个交点,
分别是线段
的中点,试判断直线
是否过定点?若过定点,求出该定点的坐标;若不过定点.请说明理由.





(1)求椭圆

(2)若过











已知椭圆
的右焦点
到直线
的距离为
,
在椭圆
上.
(1)求椭圆
的方程;
(2)若过
作两条互相垂直的直线
,
是
与椭圆
的两个交点,
是
与椭圆
的两个交点,
分别是线段
的中点试,判断直线
是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由.






(1)求椭圆

(2)若过











已知焦距为2
的椭圆
:
的右顶点为
,直线
与椭圆
交于
、
两点(
在
的左边),
在
轴上的射影为
,且四边形
是平行四边形.
(1)求椭圆
的方程;
(2)斜率为
的直线
与椭圆
交于两个不同的点
,
.
(i)若直线
过原点且与坐标轴不重合,
是直线
上一点,且
是以
为直角顶点的等腰直角三角形,求
的值;
(ii)若
是椭圆的左顶点,
是直线
上一点,且
,点
是
轴上异于点
的点,且以
为直径的圆恒过直线
和
的交点,求证:点
是定点.














(1)求椭圆

(2)斜率为





(i)若直线






(ii)若











已知圆M:(x+m)2+y2=4n2(m,n>0且m≠n),点N(m,0),P是圆M上的动点,线段PN的垂直平分线交直线PM于点Q,点Q的轨迹为曲线C.
(1)讨论曲线C的形状,并求其方程;
(2)若m=1,且△QMN面积的最大值为
.直线l过点N且不垂直于坐标轴,l与曲线C交于A,B,点B关于x轴的对称点为D.求证:直线AD过定点,并求出该定点的坐标.
(1)讨论曲线C的形状,并求其方程;
(2)若m=1,且△QMN面积的最大值为

已知椭圆C:
(
)经过点
,离心率为
.
(1)求椭圆C的方程;
(2)设O为原点,直线l:
(
)与椭圆C交于两个不同点P、Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若
,求证:直线l经过定点.




(1)求椭圆C的方程;
(2)设O为原点,直线l:


