刷题首页
题库
高中数学
题干
已知定直线
,定点
,以坐标轴为对称轴的椭圆
过点
且与
相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)椭圆的弦
的中点分别为
,若
平行于
,则
斜率之和是否为定值?若是定值,请求出该定值;若不是定值请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-04 10:58:42
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,已知点
,
的坐标分别为
,
.直线
,
相交于点
,且它们的斜率之积是
.记点
的轨迹为
.
(Ⅰ)求
的方程.
(Ⅱ)已知直线
,
分别交直线
于点
,
,轨迹
在点
处的切线与线段
交于点
,求
的值.
同类题2
如图,
为椭圆
的左右焦点,
是椭圆的两个顶点,
,
,若点
在椭圆
上,则点
称为点
的一个“椭点”.直线
与椭圆交于
两点,
两点的“椭点”分别为
,已知以
为直径的圆经过坐标原点
.
(1)求椭圆
的标准方程;
(2)试探讨
的面积
是否为定值?若为定值,求出该定值;若不为定值,请说明理由.
同类题3
已知椭圆
的左焦点为
,离心率
.
(I)求椭圆C的标准方程;
(II)已知直线
交椭圆C于A,B两点.
①若直线
经过椭圆C的左焦点F,交y轴于点P,且满足
.求证:
为定值;
②若
,求
面积的取值范围.
同类题4
已知椭圆
离心率为
,四个顶点构成的四边形的面积是4.
(1)求椭圆
C
的标准方程;
(2)若直线
与椭圆
C
交于
P
,
Q
均在第一象限,直线
OP
,
OQ
的斜率分别为
,
,且
(其中
O
为坐标原点).证明:直线
l
的斜率
k
为定值.
同类题5
已知椭圆
:
的离心率为
,且经过点
.
(1)求椭圆
的方程.
(2)过点
且不与坐标轴垂直的直线
交
于点
,
,点
是直线
上的任意一点,证明:
,
,
的斜率成等差数列.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题