刷题首页
题库
高中数学
题干
过椭圆
的一个焦点
的直线与椭圆交于
两点,则
与
和椭圆的另一个焦点
构成的
的周长为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2017-12-31 12:27:15
答案(点此获取答案解析)
同类题1
已知椭圆
,
、
分别是椭圆短轴的上下两个端点;
是椭圆的左焦点,
P
是椭圆上异于点
、
的点,
是边长为4的等边三角形.
(1)写出椭圆的标准方程;
(2)设点
R
满足:
,
.求证:
与
的面积之比为定值.
同类题2
已知椭圆
的中心在坐标原点
,其焦点与双曲线
的焦点重合,且椭圆
的短轴的两个端点与其一个焦点构成正三角形.
(1)求椭圆
的方程;
(2)过双曲线
的右顶点
作直线
与椭圆
交于不同的两点
.设
,当
为定值时,求
的值;
同类题3
已知椭圆
的左右焦点分别为
,过
任作一条与坐标轴都不垂直的直线,与
交于
两点,且
的周长为
.当直线
的斜率为
时,
与
轴垂直
(1)求椭圆
的方程
(2)若
是该椭圆上位于第一象限的一点,过
作圆
的切线,切点为
,求
的值;
(3)设
为定点,直线
过点
与
轴交于点
,且与椭圆交于
两点,设
,
,求
的值
同类题4
已知椭圆
的左、右焦点分别是
,
,其离心率为
,点
是椭圆
上任一点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)若斜率不为0的直线与椭圆
相交于
,
两个不同点,且
是平行四边形,证明:四边形
的面积为定值.
同类题5
已知椭圆
的左、右焦点分别为
是椭圆上的一点,当
时,
的面积为
.
(1)求椭圆
的方程;
(2)过
的直线
与椭圆
交于
两点,过
两点分别作定直线
的垂线,垂足分别为
,求
为定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题