刷题首页
题库
高中数学
题干
已知椭圆
C
:
,
F
1
、
F
2
分别为其左、右焦点,
A
1
,
A
2
分别为其长轴的左右端点,动点
M
满足
MA
2
⊥
A
1
A
2
,
A
1
M
交椭圆于点
P
,则
的值为( )
A.8
B.16
C.20
D.24
上一题
下一题
0.99难度 单选题 更新时间:2018-01-10 11:40:26
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,且过点
,直线
交椭圆
于不同的两点
,设线段
的中点为
.
(1)求椭圆
的方程;
(2)当
的面积为
(其中
为坐标原点)且
时,试问:在坐标平面上是否存在两个定点
,使得当直线
运动时,
为定值?若存在,求出点
的坐标和定值;若不存在,请说明理由.
同类题2
已知椭圆
离心率为
为椭圆上一点.
(1)求
的方程;
(2)已知斜率为
,不过点
的动直线
交椭圆
于
两点.证明:直线
的斜率和为定值.
同类题3
椭圆
的离心率
.
(1)求椭圆
的方程;
(2)如图所示,A、B、D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值.
同类题4
已知椭圆
的两个焦点
,
,且椭圆过点
,
,且
是椭圆上位于第一象限的点,且
的面积
.
(1)求点
的坐标;
(2)过点
的直线
与椭圆
相交于点
,
,直线
,
与
轴相交于
,
两点,点
,则
是否为定值,如果是定值,求出这个定值,如果不是请说明理由.
同类题5
设椭圆
,过点
的直线
,
分别交
于不同的两点
、
,直线
恒过点
(1)证明:直线
,
的斜率之和为定值;
(2)直线
,
分别与
轴相交于
,
两点,在
轴上是否存在定点
,使得
为定值?若存在,求出点
的坐标,若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题