- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知抛物线C顶点在坐标原点,焦点F在Y轴的非负半轴上,点
是抛物线上的一点.

(1)求抛物线C的标准方程
(2)若点P,Q在抛物线C上,且抛物线C在点P,Q处的切线交于点S,记直线 MP,MQ的斜率分别为k1,k2,且满足
,当P,Q在C上运动时,△PQS的面积是否为定值?若是,求出△PQS的面积;若不是,请说明理由.


(1)求抛物线C的标准方程
(2)若点P,Q在抛物线C上,且抛物线C在点P,Q处的切线交于点S,记直线 MP,MQ的斜率分别为k1,k2,且满足

若点O和点
分别是双曲线
的中心和左焦点,点P为双曲线右支上的任意一点,则
的取值范围为( )



A.[3-![]() ![]() | B.[3+![]() ![]() | C.[![]() ![]() | D.[![]() ![]() |
已知抛物线
:
,点
为直线
上任一点,过点
作抛物线的两条切线,切点分别为
,
,
(1)证明
,
,
三点的纵坐标成等差数列;
(2)已知当点
坐标为
时,
,求此时抛物线
的方程;
(3)是否存在点
,使得点
关于直线
的对称点
在抛物线
上,其中点
满足
,若存在,求点
的坐标;若不存在,说明理由.








(1)证明



(2)已知当点




(3)是否存在点








已知点
,
,若直线上存在点
,使得
,则称该直线为“
型直线”.给出下列直线:(1)
;(2)
;(3)
;(4)
其中所有是“
型直线”的序号为______.










已知
,
是双曲线
:
(
、
为常数,
)上的两个不同点,
是坐标原点,且
,
(1)若
是等腰三角形,且它的重心是双曲线的右顶点,求双曲线
的渐近线方程;
(2)求
面积的最小值.









(1)若


(2)求
