- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为F,直线
与抛物线C相切于点P,过点P作抛物线C的割线PQ,割线PQ与抛物线C的另一交点为Q,A为PQ的中点.过A作y轴的垂线与y轴交于点H,与直线l相交于点N,M为线段AN的中点.
(1)求抛物线C的方程;
(2)在x轴上是否存在一点T,使得当割线PQ变化时,总有
为定值?若存在,求出该点的坐标;若不存在,请说明理由.


(1)求抛物线C的方程;
(2)在x轴上是否存在一点T,使得当割线PQ变化时,总有

已知抛物线
的顶点在坐标原点,焦点在
轴的正半轴上,抛物线
上的一点
到其焦点的距离为5.
(1)求抛物线
的方程;
(2)已知点
,
为抛物线
上一动点,是否存在垂直于
轴的直线
被以
为直径的圆截得的弦长为定值?若存在,求出直线
的方程;若不存在,说明理由.




(1)求抛物线

(2)已知点







已知动点
到定点
的距离比
到定直线
的距离小
.
(1)求点
的轨迹
的方程;
(2)过点
任意作互相垂直的两条直线
,
,分别交曲线
于点
,
和
,
.设线段
,
的中点分别为
,
,求证:直线
恒过一个定点;
(3)在(2)的条件下,求
面积的最小值.





(1)求点


(2)过点













(3)在(2)的条件下,求
