- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆E:
(a﹥b﹥0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点
在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为
的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:|MA|·|MB|=|MC|·|MD|.


(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为

已知
、
分别是椭圆

的左、右焦点,点
是椭圆
上一点,且
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
相交于
,
两点,若
,其中
为坐标原点,判断
到直线
的距离是否为定值?若是,求出该定值;若不是,请说明理由.








(1)求椭圆

(2)设直线








已知抛物线的焦点为F,过抛物线上一点P作抛物线的切线交x轴于点D,交y轴于Q点,当时,.
(1)判断的形状,并求抛物线的方程;
(2)若两点在抛物线上,且满足
,其中点,若抛物线上存在异于
的点H,使得经过
三点的圆和抛物线在点处有相同的切线,求点H的坐标.
(1)判断的形状,并求抛物线的方程;
(2)若两点在抛物线上,且满足



已知抛物线
过点
,且焦点为F,直线l与抛物线相交于A,B两点.
⑴求抛物线C的方程,并求其准线方程;
⑵
为坐标原点.若
,证明直线l必过一定点,并求出该定点.


⑴求抛物线C的方程,并求其准线方程;
⑵


已知椭圆
的离心率为
,且过点
,直线
交椭圆
于不同的两点
,设线段
的中点为
.

(1)求椭圆
的方程;
(2)当
的面积为
(其中
为坐标原点)且
时,试问:在坐标平面上是否存在两个定点
,使得当直线
运动时,
为定值?若存在,求出点
的坐标和定值;若不存在,请说明理由.










(1)求椭圆

(2)当







