- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- + 抛物线中的定点、定值
- 抛物线中的直线过定点问题
- 抛物线中存在定点满足某条件问题
- 抛物线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过抛物线C:
上一点
作两条直线分别与抛物线相交于M,N两点,连接MN,若直线MN,PM,PN与坐标轴都不垂直,且它们的斜率满足
,
,则直线
为坐标原点
的斜率为









A.3 | B.2 | C.1 | D.![]() |
已知抛物线
经过点
,过
作直线
与抛物线相切.
(1)求直线
的方程;

(2)如图,直线
∥
,与抛物线
交于
,
两点,与直线
交于
点,是否存在常数
,使
.




(1)求直线


(2)如图,直线









已知抛物线
的焦点为
,准线为
,过
的直线与
交于
,
两点,交
于
,过
,
分别作
轴的平行线,分别交
于
,
两点.若
,
的面积等于
,则
的方程为( )





















A.![]() | B.![]() | C.![]() | D.![]() |
已知抛物线
的准线方程为
.
(1)求抛物线
的标准方程;
(2)过点
作斜率为
的直线交抛物线
于
,
两点,点
,连接
,
与抛物线
分别交于
,
两点,直线
的斜率记为
,问:是否存在实数
,使得
成立,若存在,求出实数
的值;若不存在,请说明理由.


(1)求抛物线

(2)过点
















已知抛物线C:
,点
在x轴的正半轴上,过点M的直线l与抛线C相交于A、B两点,O为坐标原点.
若
,且直线l的斜率为1,求证:以AB为直径的圆与抛物线C的准线相切;
是否存在定点M,使得不论直线l绕点M如何转动,
恒为定值?若存在,请求出点M的坐标;若不存在,请说明理由.






已知抛物线C的顶点在坐标原点,焦点F在x轴上,抛物线C上一点
到焦点F的距离为
.
Ⅰ
求抛物线C的标准方程;
Ⅱ
设点
,过点
的直线l与抛物线C相交于A,B两点,记直线MA与直线MB的斜率分别为
,
,证明:
为定值.










