- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- + 抛物线中的参数范围及最值
- 抛物线中的参数范围问题
- 求抛物线上一点到定直线的最值
- 求抛物线上一点到定点的最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线y2 =" 2px" (p > 0)的交点为F,过
引直线l交此抛物线于A,B两点.
(Ⅰ)若直线AF的斜率为2,求直线BF的斜率;
(Ⅱ)若p=2,点M在抛物线上,且
,求t的取值范围.

(Ⅰ)若直线AF的斜率为2,求直线BF的斜率;
(Ⅱ)若p=2,点M在抛物线上,且

已知函数
与
的图象相交于
,
,
,
分别是
的图象在
两点的切线,
分别是
,
与
轴的交点.
(Ⅰ)求
的取值范围;
(Ⅱ)设
为点
的横坐标,当
时,写出
以
为自变量的函数式,并求其定义域和值域;
(Ⅲ)试比较
与
的大小,并说明理由(
是坐标原点).












(Ⅰ)求

(Ⅱ)设





(Ⅲ)试比较



(题文)已知点
是抛物线
的焦点,点
是抛物线
上一点,且
,
的方程为
,过点
作直线
,与抛物线
和
依次交于
.(如图所示)
(1)求抛物线
的方程;
(2)求
的最小值.












(1)求抛物线

(2)求


已知抛物线
的焦点为
,
为
上异于原点的任意一点.
(1)若直线
过焦点
,且与抛物线
交于
两点,若
是
的一个靠近点
的三等分点,且点
的横坐标为1,弦长
时,求抛物线
的方程;
(2)在(1)的条件下,若
是抛物线
上位于曲线
(
为坐标原点,不含端点
)上的一点,求
的最大面积.




(1)若直线










(2)在(1)的条件下,若






抛物线
的焦点
是
的顶点,过
点的直线
的斜率分别是
,直线
与
交于
,直线
与
交于

(I)求抛物线
的方程,并证明:
分别是
的中点,且直线
过定点
(II)①求
面积的最小值
②设
面积分别为
,求证:














(I)求抛物线




(II)①求

②设



如图,抛物线
的焦点为
,取垂直于
轴的直线于抛物线交于不同的两点
,过
作圆心为
的圆,使抛物线上其余点均在圆外,且
.

(1)求抛物线
和圆
的方程;
(2)过点
作倾斜角为
的直线
,且直线
与抛物线
和圆
依次交于
,求
的最小值.








(1)求抛物线


(2)过点







