- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- + 抛物线的弦长
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知直线
:
与直线
关于
轴对称.
(1)若直线
与圆
相切于点
,求
的值和
点的坐标;
(2)直线
过抛物线
的焦点,且与抛物线
交于
,
两点, 求
的值 .





(1)若直线





(2)直线






已知抛物线
的焦点为F,过点F分别作两条直线
,直线
与抛物线C交于
两点,直线
与抛物线C交于
点,若
与直线
的斜率的乘积为
,则
的最小值为( )










A.14 | B.16 | C.18 | D.20 |
如图,已知F是抛物线C:
的焦点,过E(﹣l,0)的直线
与抛物线分別交于A,B两点(点A,B在x轴的上方).

(1)设直线AF,BF的斜率分別为
,
,证明:
;
(2)若
ABF的面积为4,求直线
的方程.



(1)设直线AF,BF的斜率分別为



(2)若


已知抛物线
的焦点为
,准线为
,过抛物线
上的点
作准线
的垂线,垂足为
,若
与
(其中
为坐标原点)的面积之比为3:1,则点
的坐标为___________.











在直角坐标系
中,曲线
:
与直线
:
交于
,
两点.
(1)当
时,求
的面积的取值范围.
(2)
轴上是否存在点
,使得当
变动时,总有
?若存在,求点
的坐标;若不存在,请说明理由.







(1)当


(2)




