- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- + 直线与抛物线的位置关系
- 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给定直线
,抛物线
.
(1)当抛物线的焦点在直线
上时,求
的值;
(2)若
的三个顶点都在(1)所确定的抛物线上,且
点的纵坐标为
,
的重心恰是抛物线
的焦点,求
所在直线的方程.


(1)当抛物线的焦点在直线


(2)若






(本题满分14分)已知抛物线
的方程为
,点
在抛物线
上.
(1)求抛物线
的方程;
(2)过点
作直线交抛物线
于不同于
的两点
,若直线
分别交直线
于
两点,求
最小时直线
的方程.




(1)求抛物线

(2)过点










已知P,Q为抛物线
上两点,点P,Q的横坐标分别为4,
2,过P、Q分别作抛物线的切线,两切线交于A,则点A的纵坐标为__________。


.已知抛物线
的对称轴上一点
,过点
的直线
交抛物线于
、
两点.
(1)若抛物线
上到点
最近的点恰为抛物线的顶点
,求
的取值范围;
(2)设直线
的斜率为
,直线
的斜率为
,若
,求
的值.






(1)若抛物线




(2)设直线






过点
作一直线与抛物线
交于
两点,点
是抛物线
上到直线
:
的距离最小的点,直线
与直线
交于点
.

(Ⅰ)求点
的坐标;
(Ⅱ)求证:直线
平行于抛物线的对称轴.











(Ⅰ)求点

(Ⅱ)求证:直线
