- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
己知抛物线
的焦点为
,准线与
轴的交点为
,过点
的直线
,抛物线
相交于不同的
两点.
(1)若
,求直线
的方程;
(2)若点
在以
为直径的圆外部,求直线
的斜率的取值范围.








(1)若


(2)若点



已知抛物线
的焦点为F,过F作平行于x轴的直线交抛物线于A,B两点(A在B的左侧),若△AOB的面积为2.
(1)求抛物线C的方程;
(2)设P是抛物线C的准线上一点,Q是抛物线上的一点,若PF⊥QF,求证:直线PQ与抛物线相切.

(1)求抛物线C的方程;
(2)设P是抛物线C的准线上一点,Q是抛物线上的一点,若PF⊥QF,求证:直线PQ与抛物线相切.

已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=________.
设F为抛物线
的焦点,A、B是抛物线C上的两个动点,O为坐标原点.
(I)若直线AB经过焦点F,且斜率为2,求线段AB的长度|AB|;
(II)当OA⊥OB时,求证:直线AB经过定点M(4,0).

(I)若直线AB经过焦点F,且斜率为2,求线段AB的长度|AB|;
(II)当OA⊥OB时,求证:直线AB经过定点M(4,0).
设抛物线
的方程为
,已知直线
交抛物线
于
两点,且
.
(1)求抛物线
的方程;
(2)点
是抛物线
上的点,过点
作圆
的两条切线,分别与
轴交于
两点,求
面积的最小值.






(1)求抛物线

(2)点






