- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左、右焦点分别为
,
,直线l与椭圆C交于P,Q两点,且点M满足
.
(1)若点
,求直线
的方程;
(2)若直线l过点
且不与x轴重合,过点M作垂直于l的直线
与y轴交于点
,求实数t的取值范围.




(1)若点


(2)若直线l过点



在直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点
为极点,
轴正半轴为极轴,建立极坐标系.直线
的极坐标方程为
.
(1)求
和
的直角坐标方程;
(2)已知
与
相切,求
的值.








(1)求


(2)已知



已知抛物线
的准线为l,过点
作斜率为正值的直线l交C于A,B两点,AB的中点为M.过点A,B,M分别作x轴的平行线,与l分别交于D,E,Q,则当
取最小值时,
________.




已知椭圆方程为
.
(1)设椭圆的左右焦点分别为
、
,点
在椭圆上运动,求
的值;
(2)设直线
和圆
相切,和椭圆交于
、
两点,
为原点,线段
、
分别和圆
交于
、
两点,设
、
的面积分别为
、
,求
的取值范围.

(1)设椭圆的左右焦点分别为




(2)设直线














