- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
:
,斜率为
的直线
与抛物线
交于
,
两点,且线段
的中点坐标为
,其中
.直线
:
与抛物线
交于
,
两点.
(1)证明:
;
(2)若直线
与圆
:
交于
,
两点,证明:
.















(1)证明:

(2)若直线






已过抛物线
:
的焦点
作直线
交抛物线
于
,
两点,以
,
两点为切点作抛物线的切线,两条直线交于
点.
(1)当直线
平行于
轴时,求点
的坐标;
(2)当
时,求直线
的方程.










(1)当直线



(2)当


过抛物线
的焦点为F且斜率为k的直线l交曲线C于
、
两点,交圆
于M,N两点(A,M两点相邻).
(1)求证:
为定值;
(2)过A,B两点分别作曲线C的切线
,
,两切线交于点P,求
与
面积之积的最小值.




(1)求证:

(2)过A,B两点分别作曲线C的切线




如图,拋物线的顶点
在坐标原点,焦点在
轴负半轴上,过点
作直线
与拋物线相交于
两点,且满足
.

(1)求直线
和拋物线的方程;
(2)当拋物线上一动点
从点
运动到点
时,求
面积的最大值.







(1)求直线

(2)当拋物线上一动点




已知抛物线
的焦点为
,
是抛物线上横坐标不相等的两点,若
的垂直平分线与
轴的交点是(3,0),则
的最大值为( )






A.2 | B.4 | C.6 | D.10 |