- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率为
,
,
分别为椭圆的左、右焦点,点
在椭圆上.
(1)求
的方程;
(2)若直线
与椭圆
相交于
,
两点,试问:在
轴上是否在点
,当
变化时,总有
?若存在求出点
的坐标,若不存在,请说明理由.





(1)求

(2)若直线









已知抛物线
的焦点为
,过点
的直线与抛物线
交于
、
两点,且当直线斜率为2时,
.
(1)求抛物线
的标准方程;
(2)过点
作抛物线
的两条弦
与
,问在
轴上是否存在一定点
,使得直线
过点
时,
为定值?若存在,求出点
的坐标;若不存在,请说明理由.







(1)求抛物线

(2)过点










已知点O为坐标原点,点F是椭圆
的左焦点,点
,
分别为C的左,右顶点,点P为椭圆C上一点,且
轴,过点A的直线l交线段PF于点M,与y轴交于点E.若直线BM经过OE上靠近O点的三等分点,则
( )





A.4 | B.2 | C.![]() | D.3 |