- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过抛物线C:y2=4x的焦点F,且斜率为
的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( )

A.![]() | B.![]() | C.![]() | D.![]() |
已知点
是双曲线
的左右焦点,其渐近线为
,且其右焦点与抛物线
的焦点
重合.
(1)求双曲线
的方程;
(2)过
的直线
与
相交于
两点,直线
的法向量为
,且
,求
的值
(3)在(2)的条件下,若双曲线
在第四象限的部分存在一点
满足
,求
的值及
的面积
.





(1)求双曲线

(2)过








(3)在(2)的条件下,若双曲线






如图,已知点
是
轴左侧(不含
轴)一点,抛物线
上存在不同的两点
、
,满足
、
的中点均在抛物线
上.

(1)求抛物线
的焦点到准线的距离;
(2)设
中点为
,且
,
,证明:
;
(3)若
是曲线
(
)上的动点,求
面积的最小值.










(1)求抛物线

(2)设





(3)若




已知等轴双曲线
:
的右焦点为
,
为坐标原点,过
作一条渐近线的垂线
且垂足为
,
.
(1)假设过点
且方向向量为
的直线
交双曲线
于
、
两点,求
的值;
(2)假设过点
的动直线
与双曲线
交于
、
两点,试问:在
轴上是否存在定点
,使得
为常数?若存在,求出点
的坐标;若不存在,试说明理由.








(1)假设过点







(2)假设过点








