- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,
为椭圆
的下顶点.过
的直线
交抛物线
于
,
两点,
是
的中点.

(1)求证:点
的纵坐标是定值;
(2)过点
作与直线
倾斜角互补的直线
交椭圆于
,
两点.求
的值,使得
的面积最大.










(1)求证:点

(2)过点







如图,过点
作两条直线
和
:
分别交抛物线
于
,
和
,
(其中
,
位于
轴上方),直线
,
交于点
.

(1)试求
,
两点的纵坐标之积,并证明:点
在定直线
上;
(2)若
,求
的最小值.
















(1)试求




(2)若


过抛物线
)的焦点F且斜率为1的直线交抛物线C于M,N两点,且
.
(1)求p的值;
(2)抛物线C上一点
,直线
(其中
)与抛物线C交于A,B两个不同的点(A,B均与点Q不重合).设直线QA,QB的斜率分别为
.
(i)直线l是否过定点?如果是,请求出所有定点;如果不是,请说明理由;
(ii)设点T在直线l上,且满足
,其中
为坐标原点.当线段
最长时,求直线l的方程.


(1)求p的值;
(2)抛物线C上一点




(i)直线l是否过定点?如果是,请求出所有定点;如果不是,请说明理由;
(ii)设点T在直线l上,且满足



过抛物线
)的焦点F且斜率为
的直线交抛物线C于M,N两点,且
.
(1)求p的值;
(2)抛物线C上一点
,直线
(其中
)与抛物线C交于A,B两个不同的点(A,B均与点Q不重合).设直线QA,QB的斜率分别为
,
.直线l是否过定点?如果是,请求出所有定点;如果不是,请说明理由;



(1)求p的值;
(2)抛物线C上一点





过抛物线
上且在第一象限内的一点
作倾斜角互补的两条直线,分别与抛物线另外交于
,
两点,若直线
的斜率为
,则
的最大值为__________.






