- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
、
是椭圆
上的两点,且
,其中
为椭圆的右焦点.
(1)求实数
的取值范围;
(2)在
轴上是否存在一个定点
,使得
为定值?若存在,求出定值和定点坐标;若不存在,说明理由.





(1)求实数

(2)在



已知椭圆C以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为
,点
在椭圆上,
Ⅰ
求椭圆C的方程.
Ⅱ
斜率为k的直线l过点F且不与坐标轴垂直,直线l交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.






在直角坐标系
中,曲线
:
与直线
:
交于
,
两点.
(1)当
时,求
的面积的取值范围.
(2)
轴上是否存在点
,使得当
变动时,总有
?若存在,求点
的坐标;若不存在,请说明理由.







(1)当


(2)





如图,过抛物线
上的一点
作抛物线的切线,分别交x轴于点D交y轴于点B,点Q在抛物线上,点E,F分别在线段AQ,BQ上,且满足
,
,线段QD与
交于点P.

(1)当点P在抛物线C上,且
时,求直线
的方程;
(2)当
时,求
的值.






(1)当点P在抛物线C上,且


(2)当


已知椭圆
中心在坐标原点,焦点在
轴上,且过
,直线
与椭圆交于
,
两点(
,
两点不是左右顶点),若直线
的斜率为
时,弦
的中点
在直线
上.
(Ⅰ)求椭圆
的方程.
(Ⅱ)若以
,
两点为直径的圆过椭圆的右顶点,则直线
是否经过定点,若是,求出定点坐标,若不是,请说明理由.













(Ⅰ)求椭圆

(Ⅱ)若以


