- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过抛物线
(其中
)的焦点
的直线交抛物线于
两点,且
两点的纵坐标之积为
.
(1)求抛物线
的方程;
(2)当
时,求
的值;
(3)对于
轴上给定的点
(其中
),若过点
和
两点的直线交抛物线
的准线
点,求证:直线
与
轴交于一定点.






(1)求抛物线

(2)当


(3)对于









已知抛物线
的焦点是F,点A、B、C在抛物线上,
为坐标原点,若点F为△ABC的重心,△
、△
、△
面积分别记为
则
的值为( )







A.![]() | B.![]() | C.![]() | D.![]() |
已知双曲线
:
,设
是双曲线
上任意一点,
为坐标原点,
为双曲线右焦点,
,
为双曲线的左右顶点.

(1)已知:无论点
在右支的何处,总有
,求
的取值范围;
(2)设过右焦点
的直线
交双曲线于
,
两点,若存在直线
,使得
为等边三角形,求
的值;
(3)若
,
,动点
在双曲线上,且与双曲线的顶点不重合,直线
和直线
与直线
:
分别相交于点
和
,试问:是否存在定点
,使得
恒成立?若存在,请求出定点
的坐标;若不存在,试说明理由.









(1)已知:无论点



(2)设过右焦点







(3)若











