- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 棱柱
- 棱锥
- 棱台
- 圆柱
- 圆锥
- 圆台
- + 球
- 球的结构特征辨析
- 球的截面的性质及计算
- 求球面距离
- 直线与球、平面与球的位置关系
- 旋转体
- 多面体
- 组合体
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在三棱锥SABC中,已知SA=4,AB=AC=1,∠BAC=
,若S,A,B,C四点均在球O的球面上,且SA恰为球O的直径,则三棱锥SABC的体积为( )

A.![]() | B.![]() | C.![]() | D.![]() |
下列说法中正确的个数是( )
①球的半径是球面上任意一点与对球心的连线;
②球面上任意两点的连线是球的直径;
③用一个平面截一个球,得到的截面是一个圆;
④用一个平面截一个球,得到的截面是一个圆面;
⑤以半圆的直径所在直线为轴旋转形成的曲面叫做球;
⑥空间中到定点的距离等于定长的所有的点构成的曲面是球面.
①球的半径是球面上任意一点与对球心的连线;
②球面上任意两点的连线是球的直径;
③用一个平面截一个球,得到的截面是一个圆;
④用一个平面截一个球,得到的截面是一个圆面;
⑤以半圆的直径所在直线为轴旋转形成的曲面叫做球;
⑥空间中到定点的距离等于定长的所有的点构成的曲面是球面.
A.0 | B.1 | C.2 | D.3 |
下列说法正确的有( )
①球的半径是球面上任意一点与球心的连线;
②球的直径是球面上任意两点间的线段;
③用一个平面截一个球,得到的是一个圆;
④用一个平面截一个球,得到的截面是一个圆面.
①球的半径是球面上任意一点与球心的连线;
②球的直径是球面上任意两点间的线段;
③用一个平面截一个球,得到的是一个圆;
④用一个平面截一个球,得到的截面是一个圆面.
A.0个 | B.1个 |
C.2个 | D.3个 |