- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 棱柱
- 棱锥
- 棱台
- 圆柱
- 圆锥
- 圆台
- + 球
- 球的结构特征辨析
- 球的截面的性质及计算
- 求球面距离
- 直线与球、平面与球的位置关系
- 旋转体
- 多面体
- 组合体
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知矩形ABCD的两边长分别为
,
,O是对角线BD的中点,E是AD边上一点,沿BE将
折起,使得A点在平面BDC上的投影恰为
如图所示
,则此时三棱锥
的外接球的表面积是______.







已知正方体
的棱长为1,给出下列四个命题:①对角线
被平面
和平面
三等分;②正方体的内切球,与各条棱相切的球,外接球的表面积之比为
;(3)以正方体的顶点为顶点的四面体的体积都是
;④正方体与以
为球心,1为半径的球的公共部分的体积是
,其中正确命题的序号为__________.








往一球型容器注入
cm3的水,测得水面圆的直径为
cm,水深为
cm,若以
cm3/s的速度往该容器继续注水,当再次测得水面圆的直径为
cm时,则需经过______s.





如图两个同心球,球心均为点
,其中大球与小球的表面积之比为3:1,线段
与
是夹在两个球体之间的内弦,其中
两点在小球上,
两点在大球上,两内弦均不穿过小球内部.当四面体
的体积达到最大值时,此时异面直线
与
的夹角为
,则
( )












A.![]() | B.![]() | C.![]() | D.![]() |