- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- + 抛物线焦点弦的性质
- 与抛物线焦点弦有关的几何性质
- 抛物线的通径问题
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
,
为其焦点,过
的直线
与抛物线
交于
、
两点.
(1)若
,求
点的坐标;
(2)若线段
的中垂线
交
轴于
点,求证:
为定值;
(3)设
,直线
、
分别与抛物线的准线交于点
、
,试判断以线段
为直径的圆是否过定点?若是,求出定点的坐标;若不是,请说明理由.







(1)若


(2)若线段





(3)设






已知抛物线
过点
(
为非零常数)与
轴不垂直的直线
与C交于
两点.
(1)求证:
(
是坐标原点);
(2)AB的垂直平分线与
轴交于
,求实数
的取值范围;
(3)设A关于
轴的对称点为D,求证:直线BD过定点,并求出定点的坐标.






(1)求证:


(2)AB的垂直平分线与



(3)设A关于

已知抛物线方程为y2=-4x,直线l的方程为2x+y-4=0,在抛物线上有一动点A,点A到y轴的距离为m,到直线l的距离为n,则m+n的最小值为________.