- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- + 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.
已知椭圆
,直线
与椭圆交于A,B两点,M是线段AB的中点,连接OM并延长交椭圆于点C,设直线AB与直线OM的斜率分别为
,且
则椭圆离心率的取值范围为__________ 






已知F1、F2分别是椭圆C:
的左焦点和右焦点,O是坐标系原点,且椭圆C的焦距为6,过F1的弦AB两端点A、B与F2所成△ABF2的周长是
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点P(x1,y1),Q(x2,y2)是椭圆C上不同的两点,线段PQ的中点为M(2,1),求直线PQ的方程.


(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点P(x1,y1),Q(x2,y2)是椭圆C上不同的两点,线段PQ的中点为M(2,1),求直线PQ的方程.
已知椭圆
的长轴两端点为双曲线
的焦点,且双曲线
的离心率为
.
(1)求双曲线
的标准方程;
(2)若斜率为1的直线
交双曲线
于
两点,线段
的中点的横坐标为
,求直线
的方程.




(1)求双曲线

(2)若斜率为1的直线





