- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- + 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
经过点
,且离心率为
.
(1)求椭圆C的方程;
(2)若一组斜率为2的平行线,当它们与椭圆C相交时,证明:这组平行线被椭圆C截得的线段的中点在同一条直线上.



(1)求椭圆C的方程;
(2)若一组斜率为2的平行线,当它们与椭圆C相交时,证明:这组平行线被椭圆C截得的线段的中点在同一条直线上.
已知椭圆
:
的右焦点为
,且离心率为
,三角形
的三个顶点都在椭圆
上,设它的三条边
、
、
的中点分别为
、
、
,且三条边所在直线的斜率分别为
、
、
,且
、
、
均不为0.
为坐标原点,若直线
、
、
的斜率之和为1.则
( )























A.![]() | B.-3 | C.![]() | D.![]() |
如图,已知椭圆
的长轴长是短轴长的
倍,右焦点为
,点
分别是该椭圆的上、下顶点,点
是直线
上的一个动点(与
轴交点除外),直线
交椭圆于另一点
,记直线
,
的斜率分别为

(1)当直线
过点
时,求
的值;
(2)求
的最小值.













(1)当直线



(2)求

已知椭圆
,倾斜角为
的直线与椭圆相交于
两点,且线段
的中点为
.过椭圆
内一点
的两条直线分别与椭圆交于点
,且满足
,其中
为实数.当直线
平行于
轴时,对应的
.

(Ⅰ)求椭圆
的方程;
(Ⅱ)当
变化时,
是否为定值?若是,请求出此定值;若不是,请说明理由.














(Ⅰ)求椭圆

(Ⅱ)当

