- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知直线
的方程为
,点
是抛物线
上到直线
距离最小的点.
(1)求点
的坐标;
(2)若直线
与抛物线
交于
两点,
的重心恰好为抛物线
的焦点
.求
的面积.





(1)求点

(2)若直线







设
是抛物线
上的一点,抛物线
在点
处的切线方程为
.
(1)求
的方程;
(2)已知过点
的两条不重合直线
,
的斜率之积为
,且直线
,
分别交抛物线
于
,
两点和
,
两点.是否存在常数
使得
成立?若存在,求出
的值;若不存在,请说明理由.





(1)求

(2)已知过点














已知抛物线
,过抛物线上一点
作两条直线分别与抛物线相交于
,
两点,连接
,若直线
,
,
与坐标轴都不垂直,且它们的斜率满足
,
,点
,则直线
的斜率为( )












A.![]() | B.![]() | C.![]() | D.![]() |
已知斜率为2的直线l过抛物线C:
的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=( )

A.1 | B.![]() | C.2 | D.4 |