- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A,B两点.
(1)若直线l的倾斜角为60°,求|AB|的值;
(2)若|AB|=9,求线段AB的中点M到准线的距离.
(1)若直线l的倾斜角为60°,求|AB|的值;
(2)若|AB|=9,求线段AB的中点M到准线的距离.
已知圆
与抛物线
有一条斜率为1的公共切线
.

(1)求
.
(2)设
与抛物线切于点
,作点
关于
轴的对称点
,在区域
内过
作两条关于直线
对称的抛物线的弦
,
.连接
.
①求证:
;
②设
面积为
,求
的最大值.




(1)求

(2)设











①求证:

②设



已知椭圆
的离心率为
,点
在椭圆D上.
(1)求椭圆D的标准方程;
(2)过y轴上一点E(0,t)且斜率为k的直线l与椭圆交于A,B两点,设直线OA,OB(O为坐标原点)的斜率分别为kOA,kOB,若对任意实数k,存在λ∈[2,4],使得kOA+kOB=λk,求实数t的取值范围.



(1)求椭圆D的标准方程;
(2)过y轴上一点E(0,t)且斜率为k的直线l与椭圆交于A,B两点,设直线OA,OB(O为坐标原点)的斜率分别为kOA,kOB,若对任意实数k,存在λ∈[2,4],使得kOA+kOB=λk,求实数t的取值范围.
已知抛物线
,直线
与E交于A,B两点,且
,其中O为坐标原点.
(1)求抛物线E的方程;
(2)设点
,直线CA,CB的斜率分别为
,试写出
的一个关系式;并加以证明.




(1)求抛物线E的方程;
(2)设点




