- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
在
上,以
为切点的
的切线的斜率为
,过
外一点
(不在
轴上)作
的切线
、
,点
、
为切点,作平行于
的切线
(切点为
),点
、
分别是与
、
的交点(如图):

(1)用
、
的纵坐标
、
表示直线
的斜率;
(2)若直线
与
的交点为
,证明
是
的中点;
(3)设三角形
面积为
,若将由过
外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做“切线三角形”,如
,再由
、
作“切线三角形”,并依这样的方法不断作切线三角形……,试利用“切线三角形”的面积和计算由抛物线及
所围成的阴影部分的面积





















(1)用





(2)若直线





(3)设三角形








(2017新课标全国卷Ⅰ文科)设A,B是椭圆C:
长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是

A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
:
(
),过原点的两条直线
和
分别与
交于点
、
和
、
,得到平行四边形
.
(1)若
,
,且
为正方形,求该正方形的面积
.
(2)若直线
的方程为
,
和
关于
轴对称,
上任意一点
到
和
的距离分别为
和
,证明:
.
(3)当
为菱形,且圆
内切于菱形
时,求
,
满足的关系式.











(1)若




(2)若直线












(3)当




