- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
,
顺次是椭圆
:
的右顶点、上顶点和下顶点,椭圆
的离心率
,且
.
(1)求椭圆
的方程;
(2)若斜率
的直线
过点
,直线
与椭圆
交于
,
两点,试判断:以
为直径的圆是否经过点
,并证明你的结论.








(1)求椭圆

(2)若斜率









如图,在平面直角坐标系
中,已知圆
,点
,点
,以
为圆心,
为半径作圆,交圆
于点
,且
的平分线交线段
于点
.

(1)当
变化时,点
始终在某圆锥曲线
上运动,求曲线
的方程;
(2)已知直线
过点
,且与曲线
交于
两点,记
面积为
,
面积为
,求
的取值范围.












(1)当




(2)已知直线









在平面直角坐标系xOy中,已知椭圆
(a>b>0) 的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C.若
,则该椭圆的离心率为______ .


已知椭圆C:
的离心率为
,且过点
.
求椭圆的标准方程;
设直线l经过点
且与椭圆C交于不同的两点M,N试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,求出点Q的坐标及定值,若不存在,请说明理由.






已知点
在椭圆
上,
、
分别为
的左、右顶点,直线
与
的斜率之积为
,
为椭圆的右焦点,直线
.
(1)求椭圆
的方程;
(2)直线
过点
且与椭圆
交于
、
两点,直线
、
分别与直线
交于
、
两点.试问:以
为直径的圆是否过定点?如果是,求出定点坐标,否则,请说明理由.










(1)求椭圆

(2)直线










