刷题首页
题库
高中数学
题干
已知椭圆C:
的离心率为
,且过点
.
求椭圆的标准方程;
设直线l经过点
且与椭圆C交于不同的两点M,N试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,求出点Q的坐标及定值,若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 08:29:44
答案(点此获取答案解析)
同类题1
已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求
面积的最大值.
同类题2
设椭圆
的左、右焦点分别为
,
,下顶点为
,
为坐标原点,点
到直线
的距离为
,
为等腰直角三角形.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交于
,
两点,若直线
与直线
的斜率之和为
,证明:直线
恒过定点,并求出该定点的坐标.
同类题3
设椭圆
的离心率
,椭圆上的点到左焦点
的距离的最大值为3.
(1)求椭圆
的方程;
(2)求椭圆
的外切矩形
的面积
的取值范围.
同类题4
已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求证:直线
恒过
轴上一定点.
同类题5
已知以椭圆
:
的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.
(1)求椭圆
的方程;
(2)直线
:
与椭圆
交于异于椭圆顶点的
,
两点,
为坐标原点,直线
与椭圆
的另一个交点为
点,直线
和直线
的斜率之积为1,直线
与
轴交于点
.若直线
,
的斜率分别为
,
,试判断
是否为定值,若是,求出该定值;若不是,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题