刷题首页
题库
高中数学
题干
已知
,
,
顺次是椭圆
:
的右顶点、上顶点和下顶点,椭圆
的离心率
,且
.
(1)求椭圆
的方程;
(2)若斜率
的直线
过点
,直线
与椭圆
交于
,
两点,试判断:以
为直径的圆是否经过点
,并证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 08:10:28
答案(点此获取答案解析)
同类题1
已知椭圆
(
)的短轴长为2,离心率为
.过点M(2,0)的直线
与椭圆
相交于
、
两点,
为坐标原点.
(1)求椭圆
的方程;
(2)求
的取值范围;
(3)若
点关于
轴的对称点是
,证明:直线
恒过一定点.
同类题2
已知点
,
分别是椭圆
的左、右焦点,离心率
,过点
的直线交椭圆
于
,
两点,
的周长为8.
(1)求椭圆
的标准方程;
(2)设
,
是直线
上的不同两点,若
,求
的最小值.
同类题3
已知椭圆
,离心率为
,点
在椭圆
上,且
的周长为6.
(1)求椭圆
的标准方程;
(2)设椭圆
的左右焦点分别为
,
,左右顶点分别为
,
,点
,
为椭圆
上位于
轴上方的两点,且
,记直线
,
的斜率分别为
,
.若
,求直线
的方程.
同类题4
已知椭圆
经过点
,离心率为
,左右焦点分别为
,
.
(1)求椭圆的方程;
(2)若直线
:
与椭圆交于
,
两点,与以
为直径的圆交于
,
两点,且满足
,求直线
的方程.
同类题5
如图所示,在直角梯形ABCD中,
,曲线段.DE上任一点到A、B两点的距离之和都相等.
(Ⅰ) 建立适当的直角坐标系,求曲线段DE的方程;
(Ⅱ) 过C能否作-条直线与曲线段DE 相交,且所得弦以C为中点,如果能,求该弦所在的直线的方程;若不能,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题