- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
和点
.
(1)求椭圆C的焦点坐标和离心率;
(2)设直线l:
与椭圆C交于A,B两点,求弦长
;
(3)求通过M点且被这点平分的弦所在的直线方程.


(1)求椭圆C的焦点坐标和离心率;
(2)设直线l:


(3)求通过M点且被这点平分的弦所在的直线方程.
已知椭圆
的离心率为
,且椭圆C过点
.
(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点的直线l与椭圆C交于A、B两点,且与圆:
交于E、F两点,求
的取值范围.



(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点的直线l与椭圆C交于A、B两点,且与圆:


如图,设F1,F2是椭圆C:
(a>b>0)的左、右焦点,直线y=kx(k>0)与椭圆C交于A,B.已知椭圆C的焦距是2,四边形AF1BF2的周长是4
.

(1)求椭圆C的方程;
(2)直线AF1,BF1分别与椭圆C交于M,N,求△MNF1面积的最大值.



(1)求椭圆C的方程;
(2)直线AF1,BF1分别与椭圆C交于M,N,求△MNF1面积的最大值.
已知椭圆
的左焦点为
是椭圆上关于原点
对称的两个动点,当点
的坐标为
时,
的周长恰为
.
(1)求椭圆
的方程;
(2)已知点
,斜率为2的直线
交椭圆
于
两点,求
面积的最大值.







(1)求椭圆

(2)已知点





已知椭圆
与双曲线
有相同的左右焦点
,
,若点
是
与
在第一象限内的交点,且
,设
与
的离心率分别为
,则
的取值范围是( )












A.![]() | B.![]() | C.![]() | D.以上答案都不对 |