- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 集合
- 函数
- 三角函数
- 向量
- 数列
- 不等式
- 解析几何
- 立体几何
- 排列组合
- 概率
- 复数
- 平面几何
- 多项式
- 数学归纳法
- 初等数论
- 导数与极限
- 其他
已知
、
、
为大于3的整数,将
的立方体分割为
个单位正方体,从一角的单位正方体起第
层、第
行、第
列的单位正方体记为
.求所有有序六元数组
的个数,使得一只蚂蚁从
出发,经过每个小正方体恰一次到达
.(注)蚂蚁可以从一个单位正方体爬到另一个与之有公共面的相邻正方体.












将n×n的棋盘的部分结点(单位正方形的顶点)染红,使得任意一个由单位正方形构成的k×k
的子棋盘的边界上至少有一个红点.记满足条件的红点数的最小值为
. 试求
的值.



以任意方式把空间染成五种颜色(每点属于一色,每色的点都有).
(1)证明:存在一个平面,至少含有四种不同颜色的点;
(2)是否一定存在五色平面?
(1)证明:存在一个平面,至少含有四种不同颜色的点;
(2)是否一定存在五色平面?
一种密码锁的密码设置是在正
边形
的每个顶点处赋值0和1两个数中的一个,同时,在每个顶点处染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?


将一个1×2014的方格表从左到右的2014个小方格依次标上1,2,…,2014.现用三种颜色g、r、y将各小方格分别染色,使得偶数格可以染g、r、y中任意一种颜色,奇数格只可以染g、y中的一种颜色,且有邻边的小方格不同色则此方格表的染色方法有种_______.
六个面分别写上1,2,3,4,5,6的正方体叫做骰子.问:
(1)共有多少种不同的骰子;
(2)骰子相邻两个面上数字之差的绝对值叫做这两个面之间的变差,变差的总和叫做全变差
,在所有的骰子中,求
的最大值和最小值.
(1)共有多少种不同的骰子;
(2)骰子相邻两个面上数字之差的绝对值叫做这两个面之间的变差,变差的总和叫做全变差

