- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 集合
- 函数
- 三角函数
- 向量
- 数列
- 不等式
- 解析几何
- 立体几何
- 排列组合
- 概率
- 复数
- 平面几何
- 多项式
- 数学归纳法
- 初等数论
- 导数与极限
- 其他
若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( ).
A.64 | B.66 | C.68 | D.70 |
已知锐角
,给出下列判断:
①长为
的三线段一定可构成一个三角形;
②长为
的三线段一定可构成一个三角形;
③长为
的三线段一定可构成一个三角形;
④长为
的三线段一定可构成一个三角形.
其中,正确判断有( )个.

①长为

②长为

③长为

④长为

其中,正确判断有( )个.
A.4 | B.3 | C.2 | D.1 |
在
方格表中的每个方格内填入一个“
”号或“
”号.若一个有序整数组
具有以下性质:
(i)
;
(ii)
;
(iii)在上述
方格表中的第
列的每个方格中“
”(或“
”)号后添上
,使得第
行的数之和为
.则称
为“优数组”,证明:至少存在四个不同的优数组.




(i)

(ii)

(iii)在上述








正五边形
的对角线
分别与对角线
、
交于点
、
,对角线
分别与对角线
、
交于点
、
,对角线
与对角线
交于点
. 设由图2中的10个点
、
、
、
、
、
、
、
、
、
和线段构成的等腰三角形的集合为
.

(1)求
中元素的数目;
(2)若将这10个点中的每个点任意染为红、蓝两种颜色之一,问是否一定存在
中的一个等腰三角形,其三个顶点同色?
(3)若将这10个点中的任意
个点染为红色,使得一定存在
中的一个等腰三角形,其三个顶点同为红色,求
的最小值.


























(1)求

(2)若将这10个点中的每个点任意染为红、蓝两种颜色之一,问是否一定存在

(3)若将这10个点中的任意



将边长为3的正
的各边三等分,过每个分点分别作另外两边的平行线,称
的边及这些平行线所交的10个点为格点.若在这10个格点中任取
个格点,一定存在三个格点能构成一个等腰三角形(包括正三角形).求
的最小值.



