- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 集合
- 函数
- 三角函数
- 向量
- 数列
- 不等式
- 解析几何
- 立体几何
- 排列组合
- 概率
- 复数
- 平面几何
- 多项式
- 数学归纳法
- 初等数论
- 导数与极限
- 其他
设
、
是两个正整数(允许
与
相等),
、
是两个由若干个实数组成的集合,且
,
(允许
),集合满足:若
、
、
、
,且
,则或
且
,或
(
且
).定义一个集合
.试求出
的最小可能值(
表示集合
的元素个数).























将
棋盘的每个方格都随意染黑白两色之一,每次操作是将其中同行、同列、同对角线的连续五个方格改变成相反的颜色.试问:能否经过有限次操作,使得所有方格的颜色都变成与原先相反的颜色?

将4个相同的红球和4个相同的蓝球排成一行,从左至右依次对应序号1,2,…,8.若同色球之间不加区分,则4个红球对应序号之和小于4个蓝球对应序号之和的排列共有______种.
已知若干个长方体盒子,其棱长均为不大于正奇数
的正整数(允许三棱长相同),且盒壁厚度忽略不计,每个盒子的三组对面分别染为红、蓝、黄三色,若没有一个盒子能以同色面平行的方式装入另一个盒子中,则称这些盒子是“和谐的”,求最多有多少个和谐盒子?

平面上有7个点,每三点的两两连线都组成一个不等边三角形.求证:一定可以找到4对三角形,使每对三角形的公共边既是其中一个三角形的最长边又是另一个三角形的最短边.