- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- + 椭圆中的定点、定值
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
,直线l不经过坐标原点O且不平行与坐标轴,l与
相交于A,B两点,线段
的中点为M.
(1)证明:直线
的斜率与直线l的斜率的乘积为定值;
(2)若直线l过点
,延长线
与
交于点P,若四边形
是平行四边形,求直线l的斜率;



(1)证明:直线

(2)若直线l过点




已知椭圆C:
(a>b>0),四点P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三点在椭圆C上.
(Ⅰ)求C的方程;
(Ⅱ)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.



(Ⅰ)求C的方程;
(Ⅱ)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
已知离心率为
的椭圆
:
的左、右焦点分别为
,
,过点
且斜率为1的直线与椭圆
在第一象限内的交点为
,则
到直线
,
轴的距离之比为( )











A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
:
的右焦点为
,且经过点
.
(1)求椭圆
的方程以及离心率;
(2)若直线
与椭圆
相切于点
,与直线
相交于点
.在
轴是否存在定点
,使
?若存在,求出点
的坐标;若不存在,说明理由.




(1)求椭圆

(2)若直线









已知椭圆
,其上顶点为
,右顶点为
为原点,点
在椭圆上运动,若
,则下列判断错误的是( )





A.![]() ![]() | B.![]() |
C.![]() | D.![]() |
在平面直角坐标系中,已知椭圆
,设
是椭圆
上任一点,从原点
向圆
作两条切线,切点分别为
.
(1)若直线
互相垂直,且点
在第一象限内,求点
的坐标;
(2)若直线
的斜率都存在,并记为
,求证:
.






(1)若直线



(2)若直线



已知椭圆
的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
,直线l的方程为:
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知直线l与椭圆
相交于
、
两点
①若线段
中点的横坐标为
,求斜率
的值;
②已知点
,求证:
为定值





(Ⅰ)求椭圆

(Ⅱ)已知直线l与椭圆



①若线段



②已知点


如图,曲线
由两个椭圆
:
和椭圆
:
组成,当
成等比数列时,称曲线
为“猫眼曲线”.

(1)若猫眼曲线
过点
,且
的公比为
,求猫眼曲线
的方程;
(2)对于题(1)中的求猫眼曲线
,任作斜率为
且不过原点的直线与该曲线相交,交椭圆
所得弦的中点为M,交椭圆
所得弦的中点为N,求证:
为与
无关的定值;
(3)若斜率为
的直线
为椭圆
的切线,且交椭圆
于点
,
为椭圆
上的任意一点(点
与点
不重合),求
面积的最大值.








(1)若猫眼曲线





(2)对于题(1)中的求猫眼曲线






(3)若斜率为









