- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- + 椭圆中的定点、定值
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率为
,点
在
上
(1)求
的方程
(2)直线
不过原点
且不平行于坐标轴,
与
有两个交点
,线段
的中点为
.证明:直线
的斜率与直线
的斜率的乘积为定值.




(1)求

(2)直线









已知点O为坐标原点,点F是椭圆C:
(a>b>0)的左焦点,点A(-2,0),B(2,0)分别为C的左、右顶点,点P为椭圆C上一点,且PF
轴,过点A的直线l交线段PF于点M,与y轴交于点E.若直线BM经过OE上靠近O点的三等分点,则
( )



A.4 | B.![]() | C.2 | D.3 |
已知椭圆
:
,直线
:
与椭圆
相交于
,
两点,
为
的中点.
(1)若直线
与直线
(
为坐标原点)的斜率之积为
,求椭圆
的方程;
(2)在(1)的条件下,
轴上是否存在定点
使得当
变化时,总有
(
为坐标原点).若存在,求出定点
的坐标;若不存在,请说明理由.









(1)若直线





(2)在(1)的条件下,






椭圆C:
过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.

(1)求椭圆C的方程;
(2)如果直线l的斜率等于-1,求出k1•k2的值;
(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.


(1)求椭圆C的方程;
(2)如果直线l的斜率等于-1,求出k1•k2的值;
(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.
已知离心率为
的椭圆
内有个内接三角形
,
为坐标原点,边
的中点分别为
,直线
的斜率分别为
,且均不为0,若直线
斜率之和为
,则
( )











A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.

(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.











(1)求

(2)试问:是否存在定点



已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设
,
,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明:直线
与
轴相交于定点
.




(1)求椭圆

(2)设











已知椭圆






(1)求椭圆

(2)设点




(3)过点







且

