刷题首页
题库
高中数学
题干
已知离心率为
的椭圆
:
的左、右焦点分别为
,
,过点
且斜率为1的直线与椭圆
在第一象限内的交点为
,则
到直线
,
轴的距离之比为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-15 08:13:18
答案(点此获取答案解析)
同类题1
已知椭圆
:
的离心率与双曲线
的离心率互为倒数,且过点
.
(1)求椭圆
的方程;
(2)过
作两条直线
与圆
相切且分别交椭圆于
两点.
①求证:直线
的斜率为定值;
②求
面积的最大值(其中
为坐标原点).
同类题2
已知
是椭圆
的左、右顶点,
是
上不同于
的任意一点,若
的离心率为
,则直线
的斜率之积为( )
A.
B.
C.
D.
同类题3
已知
分别是椭圆
的左、右焦点,直线
与
交于
两点,
,且
.
(1)求
的方程;
(2)已知点
是
上的任意一点,不经过原点
的直线
与
交于
两点,直线
的斜率都存在,且
,求
的值.
同类题4
如图,在平面直角坐标系
中,已知圆
,椭圆
,
为椭圆右顶点.过原点
且异于坐标轴的直线与椭圆
交于
两点,直线
与圆
的另一交点为
,直线
与圆
的另一交点为
,其中
.设直线
的斜率分别为
.
(1)求
的值;
(2)记直线
的斜率分别为
,是否存在常数
,使得
?若存在,求
值;若不存在,说明理由;
(3)求证:直线
必过点
.
同类题5
已知椭圆
,离心率
,点
在椭圆上.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上一点,左顶点为
,上顶点为
,直线
与
轴交于点
,直线
与
轴交于点
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题