刷题首页
题库
高中数学
题干
已知椭圆
:
的右焦点为
,且经过点
.
(1)求椭圆
的方程以及离心率;
(2)若直线
与椭圆
相切于点
,与直线
相交于点
.在
轴是否存在定点
,使
?若存在,求出点
的坐标;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-17 07:38:47
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,已知椭圆
:
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设点
,点
在
轴上,过点
的直线交椭圆
交于
,
两点.
①若直线
的斜率为
,且
,求点
的坐标;
②设直线
,
,
的斜率分别为
,
,
,是否存在定点
,使得
恒成立?若存在,求出
点坐标;若不存在,请说明理由.
同类题2
已知椭圆
:
的左、右焦点分别为
,
,过
的直线
与椭圆
交于
两点,
的周长为
.
(1)求椭圆
的方程;
(2)若过点
作
轴的垂线
,则
轴上是否存在一点
,使得直线
与直线
的交点恒在一条定直线上?若存在,求该点的坐标及该定直线的方程,若不存在,请说明理由.
同类题3
已知椭圆C:
的右焦点为
,过
的直线
与C交于
两点.当
与
轴垂直时,线段
长度为1.
为坐标原点.
(Ⅰ)求椭圆C的方程
(Ⅱ)若对任意的直线
,点
总满足
,求实数
的值.
(Ⅲ)在(Ⅱ)的条件下,写出
面积的最大值 (只需写出结论).
同类题4
设椭圆
的左右焦点分别为
,离心率
,右准线为
,
是
上的两个动点,
.
(Ⅰ)若
,求
的值;
(Ⅱ)证明:当
取最小值时,
与
共线.
同类题5
已知椭圆
的右焦点为
且
,设短轴的一个端点为
,原点
到直线
的距离为
,过原点和
轴不重合的直线与椭圆
相交于
两点,且
.
(1) 求椭圆
的方程;
(2) 是否存在过点
的直线
与椭圆
相交于不同的两点
且使得
成立?若存在,试求出直线
的方程;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中存在定点满足某条件问题